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Abstract 

The causal effect of city size on urban wage premia has been difficult to measure because unusually 
skilled workers may select into large city labor markets. We propose a new approach to this challenge. 
For single-peaked wage distributions, if individuals left of the mode disproportionately select out of large 
city labor markets, the CDF evaluated at the mode shrinks as city size increases. Among college trained, 
white full-time US workers, evidence of selection is present even after conditioning on extensive 
observable attributes. Among individuals with a high school degree or less, selection is absent. Additional 
estimates indicate that for college trained workers, 3.5% is an upper bound on the modal worker’s wage 
elasticity with respect to city size. For those with limited education we can be more precise: modal wage 
elasticity is 3.9% for men and 5.2% for married women. 
 
JEL Codes:  R00, J30, C24 
Key Words: Selection, Mode, Agglomeration Economies 
 
 
 



 
 

1. Introduction 

Despite broad consensus that cities enhance productivity (see Rosenthal and Strange (2004, 2020) 

and Combes and Gobillon (2015) for reviews), the magnitude of this effect is difficult to confirm because 

unusually skilled workers may select into large city labor markets.1 Motivated by studies that draw on the 

shape of factor return distributions for identification (e.g. Saez, 2010; Combes et al, 2012; Eeckhout, 

Pinheiro and Schmidheiny, 2014; Kleven, 2016; Jales and Yu, 2017; and Jales 2018), we propose a new 

approach to test for whether selection is present and to estimate the effect of city size on a typical 

worker’s wage. We show that for single-peaked wage distributions with a well-defined interior mode, if 

workers left of the mode disproportionately drop out of large city labor markets the CDF evaluated at the 

mode will shrink as city size increases, and sensitivity of modal wage to selection diminishes as the mode 

becomes more prominently shaped.  

We highlight four populations in the U.S. that are likely to differ in their sensitivity to selection 

because of differences in labor force participation and mobility across MSAs.2 These include married 

women with a college degree or more, married women with a high school degree or less, and analogous 

samples for men (grouping married and single individuals together). For prime age individuals, labor 

supply is elastic for married women but inelastic for men (e.g. Heim, 2007; Blau and Kahn, 2007). Highly 

educated individuals may also be more willing to relocate across MSAs (e.g. Molloy et al, 2011; Balgova, 

2022), in part because they are more likely to benefit from skill bias in large city labor markets that has 

become more prominent in recent decades (e.g. Autor, 2019). These mechanisms suggest that selection is 

most likely to be present for married college educated women and least relevant for men with limited 

education, priors that we consider empirically. 

 
1 Throughout, we remain agnostic as to the underlying mechanisms that may drive higher returns in cities, focusing 
instead on selection. Other studies highlighted in the review papers above consider the nature of underlying 
microfoundations of agglomeration economies and how that contributes to different patterns of agglomeration and 
productivity effects across industries and workers. See also Duranton and Puga (2001) for an industry-based 
example and Bacolod et al (2009) for an example that focuses on different types of individuals. 
2 As an example, Black et al. (2014) argue that higher commuting costs in large cities discourage married women 
from working. Costa and Kahn (2000) provide evidence that dual career college educated couples are more likely to 
locate in large cities to help address job market co-location challenges. 
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Throughout, our focus is on the effect of unobserved factors that affect wage as it is 

unobservables that drive concern about selection. Using individual level data from the 2000 U.S. census, 

we begin by creating relatively homogeneous samples with observations restricted to full-time working 

individuals, age 25-55, who are white, non-Hispanic and native born. For each of our four samples, log 

wage is regressed on age fixed effects, occupation fixed effects, industry fixed effects, years of schooling 

fixed effects (for the high school or less samples) and marital status (for men). The residuals from these 

regressions capture unobserved factors that affect wage and are used in all of the analysis that follows. To 

facilitate comparison of summary statistics across our four samples, we add the sample-specific raw log 

wage mean values to the residuals. This preserves sample means but has no effect on our primary 

estimates because the variance and shapes of the residual distributions are driven entirely by 

unobservables. Formed as above, the adjusted residuals are sometimes referred to as conditional wage or 

simply wage. 

For each of our four samples, the conditional wage distributions are single peaked with prominent 

interior modes in small (less than 1 million) and large (more than 2.5 million) urban areas. This is evident 

in Figure 1 which displays density plots having converted the log wage measures to wage levels. Plots are 

in separate panels for the four demographic groups highlighted above, each of which includes a separate 

density for small and large MSAs. If the underlying latent densities were not single peaked, then selection 

would be the primary driver of the single peaked shape of the densities in the figure. Although we cannot 

rule out that possibility – latent densities are unobserved – the pronounced interior mode for each of the 

densities in Figure 1 suggests that the underlying latent densities are similarly shaped.3 

Bearing this in mind, in the simplest case, if only workers to the left of the mode drop out of large 

city labor markets, the mode does not shift. In more general cases, selection extends to the right of the 

mode. In that instance, for a linear, monotonic selection process, elasticity conditions developed later in 

 
3 It is worth noting, that wage and earnings data have long been recognized as single peaked, examples of which 
appear in Chotikapanich et al (1997), Clementi and Gallegati (2005), Lopez et al (2006), Sala-i-Martin and 
Pinkovsky (2009), Eeckhout, Pinheiro and Schmidheiny (2014), and many other studies. Density plots of college 
and graduate school entrance exam scores (e.g. SAT and GRE) are also strongly single peaked. 
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the paper determine the extent of modal shift. Moreover, that shift shrinks to zero as the mode becomes 

increasingly sharp (as with a Laplace distribution). These principles point to three complementary 

regressions that we estimate. The first regresses the CDF of modal wage in the city on log city size. This 

regression serves as a diagnostic tool to discern whether selection is present. The second and third 

regressions replace the dependent variable with log modal wage in the city and log mean wage in the city, 

respectively. These regressions shed further light on how the mode can be used to evaluate the effect of 

city size on worker wage. 

Results from the CDF regressions yield compelling evidence that among college trained workers, 

including both married women and men, selection contributes to higher wages in larger cities. Among 

individuals with a high school degree or less, evidence of selection is absent. These patterns are broadly 

consistent with our priors. They also echo patterns highlighted by Autor (2019). Autor documents the 

increase in skill bias in large U.S. cities in the last several decades, with a growing role for college 

trained, knowledge-oriented workers. He also shows that the nature of work for noncollege workers has 

shifted dramatically in large cities, becoming increasingly similar to work performed in small cities, and 

more reliant on generic as opposed to differentiated skill. These trends may be contributing to differences 

in selection that we estimate for college and noncollege workers. 

Estimates from the mode and mean wage regressions are also revealing. For college educated 

workers, the elasticity of modal wage with respect to MSA size is roughly 3.5% for married women and 

for men. Having confirmed that selection is present in both samples, that estimate should be interpreted as 

an upper bound on the effect of MSA size on wage for the typical (modal) worker. 

For these same two samples, estimates based on log mean wage in an MSA are notably higher. 

The estimates are 5.78% and 5.47% for college educated married women and for men, respectively. The 

larger elasticities for mean wage could arise from two sources. One is selection. Given evidence of 

strongly single-peaked distributions with interior modes (in Figure 1), selection likely pulls the mean up 

relative to the mode. A second mechanism is dilation which would occur if high performing individuals 

based on unobserved factors derive greater productivity boosts from operating in a larger MSA (e.g. 
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Combes et al, 2012; Gaubert, 2018). This would also pull mean wage up relative to modal wage. 

Although we cannot confirm whether dilation is present in these samples (for reasons described later), our 

estimates suggest that selection is contributing to the spread between mode and mean wage effects.  

The pattern for those with a high school degree or less is different. As noted above, for this group, 

evidence of selection is absent, both for married women and for men. The estimated elasticities of modal 

and mean wage with respect to MSA size are also quite similar, 5.23% and 5.26% respectively for 

married women and 3.94% and 4.00% for men.4 We show later that absence of selection effects and 

similar estimates of the wage elasticities at the mode and mean implies that dilation is not present. This 

allows us to be more definitive about city size effects: among workers with limited education, an 

approximate doubling of city size increases wage for the typical (modal) married woman by roughly 5% 

and among men by roughly 4%. 

At face value, the wage elasticities above suggest that the urban premium for a modal noncollege 

worker is higher than for a modal college trained individual. This does not, however, necessarily indicate 

that workers with limited education derive a greater productivity boost from city size. Instead, as 

suggested by Autor (2019), if noncollege individuals are not notably more productive in large cities, they 

may require compensation to remain in large urban markets where they serve as complements to college 

trained workers. This is because large cities tend to be expensive. 

Using the mode as above has limitations. Most prominently there must be a prior that the 

underlying latent density is single peaked with a well-defined interior mode. This is consistent with 

Figure 1 and characteristic of considerable economic data. The modal individual or group must also be 

informative. For symmetric distributions, the mode is the same as the mean and the median. More 

generally, the mode represents the most common occurrence. In politics, this could sometimes be a 

candidate’s “base” whose support is needed to secure a majority. In education, resource constrained 

schools may skew teaching and related opportunities towards students with more typical (modal) 

 
4 In Table 2, t-ratios on these differences are 0.08 and 0.15, confirming that the differences are not significant. 
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attributes. In such instances where the most common individual matters for policy or behavior, the mode 

will tend to be of intrinsic interest.5 

Several alternate approaches have been used to address possible selection of unusually skilled 

workers into larger cities, each with advantages and challenges. Eckert et al (2022), De la Roca (2017), 

De la Roca and Puga (2017), and Glaeser and Mare (2001) use large individual-level panel data files for 

Denmark, Spain, and the U.S., each of which allows the authors to control for person fixed effects and 

model movement into and away from large cities. Person fixed effects do much to capture unobserved 

skill of an individual, but this approach is not possible for widely accessible cross-sectional data. Pseudo-

random experiments have also been used to help identify causal effects. Eckert et al (2022) document 

outcomes for refugees randomly assigned to different cities in Denmark; Ahlfeldt et al (2015) consider 

changes after the Berlin Wall came down, and Greenstone et al (2010) compare outcomes in locations 

selected by major companies as compared to runner-up locations that were nearly chosen. Pseudo random 

events are not always available, however, and are often idiosyncratic in ways that may limit 

generalization to other settings. Rosenthal and Strange (2008) instrument for local agglomeration using 

geologic features as cost shifters for construction of tall buildings. Instrument validity must still be 

defended, however, and instrument variation may not be sufficient in some locations (e.g. landslide 

hazard is similar throughout much of the U.S. Midwest). Gaubert (2018), Ahlfeldt et al (2015) and Baum-

Snow and Pavan (2012) use structural methods to estimate productivity gains from agglomeration and 

proximity. These papers stand out for their successful integration of economic theory with estimation. 

Applying structural methods, however, is not straightforward as it requires careful balancing of 

parsimony that is needed to make the models tractable with enough generality to allow for robustness. 

 
5 Our focus on the mode has precedents. Lee (1989) showed that the mode from a truncated distribution can be a 
consistent estimate of the conditional mean from the non-truncated distribution. Our work is also related to modal 
regression literature in statistics and econometrics (Lee, 1993; Kemp et al, 2012; Huang et al. 2013; Yao and Li, 
2014; Chen et al., 2016, Honoré, 1989). Cardoso and Portugal (2005) show that modal wage is a better measure of 
the central tendency of a wage distribution when there is collective bargaining. Bound and Krueger (1991) and Hu 
and Schennach (2008) discuss how to use mode to account for certain forms of reporting errors.  
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Different from the strategies above, our use of the mode is most similar to the approach adopted 

by Combes et al (2012), which is among the few studies in the agglomeration literature to draw on the 

shape of the factor return distribution.6 Combes et al (2012) divide French cities into those below versus 

those above median size. Focusing mostly on manufacturing plants, they minimize mean squared 

deviations between TFP quantiles for plants organized into the two groups of cities. Their model is 

designed in a manner that identifies parameters of the underlying city size productivity function, 

including a shift factor and dilation, in addition to a TFP threshold value below which companies select 

out of large city markets. An appealing feature of the Combes et al (2012) model is that it does not 

impose any structure on the underlying latent productivity distribution although it does embed a particular 

selection process in the estimation routine which makes their estimates potentially sensitive to departures 

from that structure. While our model based on the mode is not as general, it can be easily implemented for 

cross-sectional datasets, drawing on variation across many locations. This makes the mode an accessible 

diagnostic tool to test for the presence of selection when using cross-sectional data, and in some instances, 

a straightforward way to estimate the effect of city size. 

 

2. Model 

2.1 Mode location when city size enhances productivity and selection is present 

This section establishes conditions that determine the location of the mode in each city’s wage 

distribution when city size enhances productivity, selection sorts workers between cities, and the 

underlying aggregate latent wage distribution is single peaked with a well-defined interior mode. We 

begin with notation. 

In the discussion below, y is a worker’s skill endowment, which is interpreted in logs, with y ≥ 0. 

The term s is city size, also in log form, where s = 0 denotes the smallest city in the system. We use fs(y) 

to represent the density of log productivity among individuals in a city of size s (s ≥ 0), where  fs(y) is 

 
6 See also Eeckhout, Pinheiro and Schmidheiny (2014) for related work. 
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assumed to be continuous and differentiable. For a given skill endowment, productivity varies with city 

size in a manner described below and is given by 𝑦 . 

Three assumptions drive features of our model that help to guide and interpret the empirical work 

that follows. The first is that large city productivity gains take a linear form that preserves an individual’s 

productivity rank within a given city, similar to Combes et al (2012), Gaubert (2018), and Firpo (2007).7 

Assumption 1: For a given skill endowment y, productivity in a city of size s is given by: 
 
𝑦 𝛽 𝑠 1 𝛽 𝑠)𝑦, where 𝛽 0 and 𝛽 0. (2.1) 

In (2.1), in the absence of city size effects, 𝛽  = 𝛽 = 0 and 𝑦  = y, in which case an individual’s 

productivity is the same in all cities. If instead increasing city size increases productivity by a common 

percentage for all workers, 𝛽 0, 𝛽  = 0, and fs(y) shifts to the right as s increases. If in addition 𝛽  > 0, 

the productivity gains from city size increase with an individual’s endowment, y. This creates a dilation 

effect so that as city size increases, fs(y) becomes right skewed with an elongated right tail. 

For (2.1) above, the cumulative distribution function (F) for productivity up to a given skill 

endowment, 𝑦, is the same in each city, denoted as F0 for the smallest city and Fs for a city of log size s 

for s > 0, 

𝐹 𝑦 𝑦  𝐹 𝑦  (2.2) 

Substituting for ys from expression (2.1) and taking derivatives with respect to y, the relationship between 

large and small city productivity densities is given by,  

𝑓 𝑦 𝑓  (2.3) 

Our next modeling assumption is to presume a linear monotonic selection process that governs 

participation in different size city labor markets. 

Assumption 2: The probability of selecting into and participating in a size-s city labor market is 
given by: 
 

 
7 The rank preservation assumption is standard in the literature on quantile treatment effects. See Firpo (2007) and 
the references therein for discussion.  
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𝜋 𝑦
𝑎  𝑏𝑦, for y 𝑦                       

 
𝑎  𝑏𝑦 ≡ 𝑝 1, for y 𝑦    

 (2.4) 

 
where 0 𝜋 𝑦 1 and b > 0. 

In (2.4), the term 𝜋 𝑦  is indexed by s to indicate that the selection probability for a given y differs with 

city size. Implicitly, a, b, and 𝑦  are also indexed by s but the subscript on these terms is suppressed for 

simplicity. Assumption 2 also makes explicit that πs(y) reaches an asymptote at 𝑦  with p ≤ 1 since πs(y) 

can never exceed 1. This assumption reflects in part the sense that operating costs are higher in larger 

cities and/or the environment more competitive. This discourages weaker workers from participating in 

larger city markets (e.g. Combes et al (2012)).  

Allowing for selection effects as above and also the possibility of productivity spillovers, 

expression (2.3) becomes,  

𝑓 𝑦 𝑓  (2.5) 

where 𝑐 𝜋 𝑢 𝑓 𝑢 𝑑𝑢 ensures that the density in the city s integrates to 1.8 

Suppose now that selection effects are present but there are no productivity gains from 

agglomeration. Then β0 = β1 = 0, and the density in (2.5) becomes, 

𝑓 𝑦 𝑓 𝑦  . (2.6) 

Our third and most important modeling assumption concerns the shape of the wage density 

function: 

Assumption 3: f0(y) is single peaked with a well defined mode at an interior location.  

Because f0(y) is assumed to be differentiable and single peaked, its slope at the mode is zero. 

Differentiating (2.6) with respect to y and setting the derivative to zero, the modal value for y (denoted by 

ym) in the conditional density, fs(y) must satisfy, 

𝜓 , 𝜓 ,  (2.7) 

 
8 Notice that for the special case when selection is independent of y, πs(y) = 𝑐  = p, and in the absence of spillover 
effects (𝛽  = 𝛽  = 0), expression (2.4) simplifies to fs(y) = f0(y). 
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where  𝜓 , ≡
′

 and  𝜓 , ≡   are the semi-elasticities of the selection and latent density 

functions, respectively. Multiplying both sides of (2.7) by y (for y ≠ 0) this can also be expressed as an 

elasticity condition, 

𝜉 ,  𝜉 ,  (2.8) 

with 𝜉 ,
%∆

%∆
 and 𝜉 ,

%∆

%∆
. Note that these expessions vary with city size but the s subscripts 

are supressed for simplicity. Expression (2.8) indicates that at the mode of the conditional distribution, a 

small change in y yields equal magnitude but opposite signed percentage changes in the selection 

probability and the density of y.  

 

2.2 Magnitude of mode shift 

The previous section established the elasticity condition that holds at the mode of a conditional 

density function. Here we focus on the amount by which selection causes the mode to shift. 

The simplest case is when all non-random selection occurs on just one side of the mode, which 

we will treat as being on the left side given our city size context. In this instance, the CDF evaluated at the 

mode shrinks in response to selection and the mode does not shift. To understand why, recall that the 

mode of a single-peaked density function has the highest density. Removing mass only from one side of 

the mode scales up the density elsewhere in the distribution – including at the original mode – by a 

common factor so that the conditional density integrates to one. Although the mode itself does not shift, 

the CDF evaluated at the mode shrinks. In settings where this case applies, it is not necessary to impose 

any structure on the selection function when using the mode to address selection. 

A more general case is when the selection function in (2.4) reaches an asymptote p to the right of 

the mode at yp > ym. If the asymptote is reached before the elasticity condition in (2.8) is satisfied, then the 

mode changes by 𝑦  - ym. If that is not the case, then further structure on the shape of the density function 

is needed to clarify the extent of modal shift. With that in mind, in Appendix A we develop additional 

properties of our model using the generalized error distribution (GED) to characterize the latent skill 
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distribution. The GED is a flexible three-parameter single-peaked function for which the shape parameter 

governs how sharply defined is the mode.9 

Several properties of our model are highlighted in the appendix and reinforce intuition already 

developed. Most important, modal shift declines monotonically as the mode becomes more sharply 

defined, converging to zero as the density converges to a Laplace distribution. At the other extreme, as the 

latent density function converges to a uniform, the mode disappears. In that instance, the density 𝑓 𝑦  

becomes a constant 𝑓  over the relevant range of y. From (2.6) it follows that 𝑓 𝑦 𝜋 𝑦  . The 

conditional density function therefore takes on the shape of the selection function scaled by 𝑓 /c. With b > 

0, the mode of fs(y) must shift all the way to the right edge of the distribution.10 These two extremes 

underscore a central premise: for the mode to be an effective device to address selection, there must be a 

clearly defined interior mode. 

 

2.3 Estimating equations 

As described earlier, we estimate three regressions in the empirical work to follow. The first uses 

F(𝑦 , ) as the dependent variable, the CDF evaluated at the modal wage for MSA i. The other two use 

modal log wage and average log wage in MSA i as the dependent variables, 𝑦 ,  and 𝑦 , respectively. For 

all three regressions, log population in MSA i is the righthand side control and is represented as si. The 

estimating equations are then given by: 

𝐹 𝑦 , 𝑐 , 𝑐 , 𝑠 𝑒  (2.9a) 

𝑦 , 𝑐 , 𝑐 , 𝑠 𝑒   (2.9b) 

𝑦 𝑐 , 𝑐 , 𝑠 𝑒  (2.9c) 

 
9 The shape parameter in the GED ranges from 0 to infinity. As the shape parameter approaches 0, the GED 
converges to a uniform distribution and the mode disappears. The normal distribution has a shape parameter of one-
half, and the Laplace has a shape parameter of 1. 
10 This is confirmed in Appendix A. For a shape parameter k = 0, the GED flattens to the uniform distribution and 
modal shift equals σ, the scale parameter. 
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The constants in (2.9a-c) capture features that are not associated with MSA size and are not of interest for 

that reason. Instead, it is the slope coefficients that are the primary focus. These allow us to infer evidence 

of whether selection is present and depending on the combination of estimates, provide differing degrees 

of information about the causal effect of city size on wage. We highlight three scenarios that are of 

particular interest. 

Consider first the case where selection is absent, with b = 0 in the selection equation (2.4). This 

implies that 𝑐 ,  = 0. Taking derivatives of (2.1), (2.9b) and (2.9c) with respect to s yields, respectively, 

𝛽 𝛽 𝑦, 𝑐 , , and 𝑐 , . Evaluating the first of these derivatives at both 𝑦  and 𝑦 and 

substituting from the latter two, we can solve for 𝛽  and 𝛽  as, 

𝛽 𝑐 ,
, , 𝑦         (2.10a) 

 
𝛽 , ,           (2.10b) 

 
where 𝑦 and 𝑦  are based on values for a reference city (e.g. the smallest city). Moreover, if c1,2 = c1,3, 

then β1 = 0 in (2.10b) and dilation in (2.1) is absent. In that case, c1,2 = c1,3 = β0. 

 Suppose next that c1,1 < 0 but there is a prior that selection does not extend beyond the mode (0 ≤ 

𝑦 𝑦 ). In that instance, we do not need to specify the shape of the selection process. Instead, the mode 

does not shift in response to selection and c1,2 measures the causal effect of MSA size on modal wage.11 

 A third and more general scenario arises when c1,1 < 0 and we cannot rule out that selection 

extends beyond the mode. In this instance, modal wage will shift right in response to selection. As a 

result, estimates of c1,2 and c1,3 are biased upwards and provide upper bounds on the causal effect of MSA 

size on productivity at the mode and mean, respectively.12 

 
11 In this instance, c1,1 would also approximate the loss of mass to the left of 𝑦  as MSA size increases. 
12 A further point is that the degree to which c1,1 is less than zero understates whether selection is present. This is 
because although c1,1 < 0 indicates that selection removes more mass left of the mode – implying that b in (2.4) is 
positive – selection will also draw the mode to the right. This secondary effect increases the CDF evaluated at the 
mode causing c1,1 < 0 to understate evidence of selection. 
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A few final points remain that affect the viability of using the mode to address selection. First, 

large samples are needed so that the mode can be estimated with reasonable precision. This will improve 

precision of the subsequent regressions in (2.9a) and (2.9b) that use the estimated mode when forming the 

dependent variable. Second, provided estimation error around the mode is uncorrelated with MSA size, 

estimates from the modal wage regression in (2.9b) will be unbiased because the estimated mode appears 

on the lefthand side of the regression. Third, this same point holds as an approximation for the CDF 

regression in (2.9a). This is because the derivative of the density function at the mode is zero, and so upon 

taking a second-order Taylor expansion around the CDF at the mode, the second order term drops out. 

The CDF evaluated at the estimated mode is then approximately equal to its true value plus the same 

linear error term (scaled by a constant in this instance) as in the modal wage regression.13 

 

3. Data, measuring modal wage, and summary statistics 

For reasons described in the Introduction, we focus on four samples, married women with a 

college degree or more, men (grouping singles and married together) with a college degree or more, and 

analogous samples for those with a high school degree or less. In each case, individual level data were 

drawn from the 5% 2000 U.S. census, downloaded from IPUMS.14 For each sample, we restrict 

observations to full-time working individuals, age 25-55, who are white, non-Hispanic and native born.15 

Full-time workers were coded as those who work at least 35 hours per week and 40 weeks per year. 

 
13 Taking a second-order Taylor expansion around the true mode and rearranging, the CDF evaluated at the 
estimated mode can be expressed as below, where e = 𝑦 𝑦  and F and f are the CDF and density functions, 
respectively, 
 

𝐹 𝑦 𝐹 𝑦 𝑓 𝑦 𝑒 𝑓′ 𝑦 𝑒  .      (N.1) 

 
Because 𝑓 𝑦 0 at the true mode, the second order term in (N.1) drops out leaving: 

 
𝐹 𝑦  𝐹 𝑦 𝑓 𝑦 𝑒  .      (N.2) 

 
Expression (N.2) indicates that the CDF evaluated at 𝑦  is approximated by the CDF evaluated at the true mode 
𝐹 𝑦  plus the same error e as in the modal wage regression scaled by the density at 𝑦 . 
14 See Ruggles et al., 2015. Year-2000 census data can be downloaded at no charge from the IPUMs website at 
https://usa.ipums.org/usa/ . 
15 Observations from Alaska and Hawaii were excluded. 
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Hourly wage was computed by dividing annual earnings by annual hours worked. Each sample is further 

restricted to (i) individuals who earn at least two-thirds of the federal minimum wage in 2000 ($5.15 in 

year-2000 dollars)16; (ii) who live in MSAs with more than 100,000 population in 2000, and (iii) for 

which 100 or more individuals remain in the sample after these other criteria are applied.17 

To focus on the effect of unobserved factors, for each sample we regressed log wage level on 15 

age fixed effects, 359 5-digit occupation fixed effects, 94 industry fixed effects, years of schooling fixed 

effects (for the high school or less samples) and marital status (for the male sample). The mean of log 

wage was then added to the residuals to preserve mean values across the samples. We sometimes refer to 

the adjusted residuals as conditional wage or simply wage. In instances where we focus on wage levels 

(as opposed to log values), we exponentiated the log wage measures. All of the analysis that follows is 

based on these conditional wage measures which were converted to May 2002 dollars to facilitate 

interpretation. 

Having prepared the conditional log wage measures as above, we estimate modal wage values for 

each of the four main samples for each MSA. This was done using a kernel density estimator with the 

Epanechnikov kernel function and Silverman’s rule of thumb for the bandwidth. 

Table 1 provides summary statistics. We focus first on individual level conditional wage rates 

having pooled data across MSAs. Measures for married women are in Panel A and for men in Panel B. In 

both cases, values for the college educated and high school or less are in separate rows. Values for the 5th, 

25th, 50th, 75th and 95th quantiles are in columns. As would be expected, wage is higher among college 

educated workers and among men. For the high school or less population, median wage is $20.41 per 

hour for married women and $26.55 per hour for men. Among the college educated, analogous values are 

$34.93 and $44.59. More substantive for our purposes, there is much more variation in wage among 

college educated workers as compared to those with high school or less. Among men, for example, the 

 
16 The federal minimum wage was $5.15 in 2000 ($8.92 in 2022 dollars). Results were unchanged when we dropped 
observations with wage below the federal minimum wage. 
17 MSA population is based on the 2000 census and was obtained from IPUMS at: 
https://usa.ipums.org/usa/resources/volii/MSA2013_PUMA2000_pop2000_crosswalk.xls . 
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interquartile ranges for the two groups are, respectively, $27.04 and $14.2. That difference is driven 

entirely by differences in unobserved factors. 

Panels C and D report summary measures for MSA-specific modal wage rates, where each 

observation is a single MSA. The distributions mirror those at the individual level, with higher wage rates 

for college educated workers and for men. Also, there is considerably more cross-MSA variation in modal 

wage rates among college educated workers as compared to high school or less workers. 

 

4. Estimates 

Table 2 reports estimates of expressions 2.9a, 2.9b and 2.9c in columns 1-3, respectively. Column 

4 reports estimates based on the difference between the mean and modal wage. In each case, log of MSA 

population in 2000 is the primary control measure. Constants are included in the regressions but are not 

reported in the table. Estimates for married women with a college degree and those with a high school 

degree or less are in Panels A and B, respectively. Corresponding estimates for men are in Panels C and 

D. 

 Consider first the evidence of selection across the four panels. This is assessed based on the 

coefficients on MSA population size in the CDF regression in column 1. For college educated workers, 

clear evidence of selection is present for both married women and for men. The corresponding 

coefficients are -0.0122 and -0.0074, with t-ratios of -3.80 and -2.93, respectively. For individuals with a 

high school degree or less, evidence of selection is absent. For married women the coefficient is -0.0006 

while for men the estimate is -0.0007 (with t-ratios of -0.19 and -0.28, respectively). Overall, these 

estimates conform to our priors. 

Focusing on the wage elasticities, estimates for college educated married women (Panel A) and 

men (Panel C) are nearly identical in magnitude. For modal wage, the elasticities are 3.43% and 3.65%, 

respectively (with t-ratios of 5.67 and 7.12). Given evidence of selection, these should be interpreted as 

upper bound measures of the effect of MSA size on the typical (modal) worker’s wage. For mean wage, 

the corresponding estimates are higher, 5.78% and 5.47% (with t-ratios of 10.93 and 12.47) and 
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significantly so relative to the modal wage elasticities (the t-ratios in column 4 on the difference in 

estimates are 5.94 and 3.94, respectively).  

For workers with a high school degree or less, the pattern is once again different for both married 

women (Panel B) and men (Panel D). For both samples, the mode and mean wage elasticities are nearly 

identical, differing by less than 0.1 percentage point (see column 4 in the table). Recall from our model 

that absence of selection and evidence that the mode and mean wage are similar suggests that dilation is 

not present. The patterns in Panels B and D are consistent with that interpretation. This also suggests that 

we can be more precise in interpretating the elasticities for those with limited education: for married 

women, an approximate doubling of MSA size increases wage by roughly 5% while for men the 

corresponding estimate is 4%. 

 

5. Conclusion 

Identifying the effect of city size on an individual’s wage is central to understanding the benefits 

of urbanization. Nevertheless, studies struggle to develop such estimates because unusually skilled 

workers may select into large city labor markets. We propose a new approach to this challenge. For single 

peaked wage distributions with a well-defined interior mode, if workers left of the mode 

disproportionately select out of large city labor markets, the CDF evaluated at the mode will shrink. 

Drawing on the principle above, estimates indicate that selection contributes to urban wage 

premia for college trained workers but is absent for individuals with a high school degree or less. This 

pattern adheres to priors that selection will be most pronounced for individuals with more elastic labor 

supply and for those who are more moble across cities. It also echos evidence from Autor (2019) that 

increasing skill bias in the last few decades has amplified the role of knowledge-oriented college trained 

workers in large cities, while at the same time, tasks performed by noncollege workers in large cities have 

become more generic and similar to work in small cities. These trends may be contributing to differences 

in selection effects that we find for college workers versus those with limited education. 
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Additional estimates indicate that for college educated workers, an upper bound on the elasticity 

of modal wage with respect to MSA size is roughly 3.5%. Among workers with limited education, the 

absence of evidence of selection allows us to be more definitive. For married women, an approximate 

doubling of city size increases a typical individual’s wage by roughly 5% while for men the 

corresponding estimate is roughly 4%. Although in principle these estimates could indicate that workers 

with limited education derive a greater productivity boost from city size as compared to college trained 

individuals, shifts in the nature of work described by Autor’s (2019) suggest an alternate explanation. 

Given the similarity of large and small city work among individuals with limited education, noncollege 

workers may require compensation for the high cost of living in large cities if they are to remain active in 

such markets where they often serve as complements to more highly trained workers (e.g. Eeckhout et al, 

2014). 

Using the mode to test for selection is easy to implement and can serve as a diagnostic tool. 

While not a panacea – there must be a credible prior of a single peaked latent distribution with a well-

defined interior mode – economic data often exhibit that property. Focusing on the mode also highlights 

outcomes for the most common occurrence or individual. This will be of intrinsic interest when behavior 

or policy is driven by the most populous group as compared to average or median outcomes. 



17 
 

References 

Ahlfeldt, Gabriel, Stephen J. Redding, Daniel M. Sturm and N. Wolf (2015). “The economics of density:  
evidence from the Berlin Wall.” Econometrica 83(6), 2127-2189. 

 
Autor, David H. (2019). “Work of the Past, Work of the Future,” AEA Papers and Proceedings, Vol 109, 1-32. 
 
Bacolod, Marigee, Bernardo S. Blum and William C. Strange (2009). “Skills in the City,” Journal of Urban 

Economics, 65(2), 136-153. 
 
Balgova, Maria (2022). “Moving to Look or Looking to Move? The Role of Job Search in Migration 

Decisions,” working paper. 
  
Baum-Snow, Nathaniel, and Ronni Pavan (2012). “Understanding the city size wage gap.” The Review of 

Economic Studies 79.1: 88-127. 
 
Behrens, Kristian and Frederic Robert-Nicoud (2015). “Agglomeration theory with heterogeneous agents.” 

Gilles Duranton, J. Vernon Henderson and William C. Strange (eds), Handbook in Regional and Urban 
Economics, Amsterdam (Holland), Elsevier Press. 

 
Black, Daniel A., Kolesnikova, Natalia, Lowell J. Taylor (2014). “Why do so few women work in New York 

(and so many in Minneapolis)? Labor supply of married women across US cities.” Journal of Urban 
Economics, 79, 59-71. 

 
Blau, Francine D., Lisa M. Kahn (2007). “Changes in the labor supply behavior of married women: 1980–

2000.” Journal of Labor Economics, 25(3), 393-438. 
 
Cardoso, Ana Rute and Pedro Portugal, (2005). “Contractual wages and the wage cushion under different 

bargaining settings.” Journal of Labor economics, 23(4), 875-902. 
 
Chen, Yen-Chi, Christopher R. Genovese, Ryan J. Tibshirani and Larry Wasserman (2016). “Nonparametric 

modal regression.” The Annals of Statistics, 44(2), 489-514. 
 
Chotikapanich, Duangkamon, Rebecca Valenzuela, and DS Prasada Rao (1997). “Global and regional 

inequality in the distribution of income: estimation with limited and incomplete data.” Empirical 
Economics 22.4: 533-546. 

 
Clementi, Fabio, and Mauro Gallegati (2005). “Pareto’s law of income distribution: Evidence for Germany, 

the United Kingdom, and the United States.” Econophysics of wealth distributions. Springer, Milano, 3-14. 
 
Combes, Pierre-Philippe, Gilles Duranton, Laurent Gobillon, Diego Puga, Sebastian Roux (2012). “The 

productivity advantages of large cities: Distinguishing agglomeration from firm 
selection.” Econometrica 80.6: 2543-2594. 

 
Combes, Pierre-Philippe and Laurent Gobillon (2015). “The Empirics of Agglomeration Economies” in G. 

Duranton, J. V. Henderson and W. Strange (eds), Handbook in Regional and Urban Economics, Volume 5, 
Amsterdam (Holland), Elsevier Press. 

 
Costa, Dora L. and Matthew E. Kahn (2000), “Power Couples: Changes in the Locational Choice of the 

College Educated, 1940-1990,” Quarterly Journal of Economics, Volume CXV, 1287-1315. 
 



18 
 

De la Roca, Jorge (2017). “Selection in initial and return migration: Evidence from moves across Spanish 
cities.” Journal of Urban Economics, 100, 33-53.  

 
De la Roca, Jorge, and Diego Puga (2017). “Learning by Working in Big Cities.” The Review of Economic 

Studies, 84.1: 106-142. 
 
Duranton, Gilles, and Diego Puga (2001). “Nursery cities: Urban diversity, process innovation, and the life 

cycle of products.” American Economic Review: 1454-1477. 
 
Eckert, Fabian, Mads Hejlesen, and Conor Walsh (2022). “The Return to Big City Experience: Evidence from 

Refugees in Denmark.” Journal of Urban Economics. 
 
Eeckhout, Jan, Roberto Pinheiro, and Kurt Schmidheiny (2014), “Spatial Sorting”, Journal of Political 

Economy, 122, 554–620. 
 
Firpo, Sergio. (2007) “Efficient semiparametric estimation of quantile treatment effects.” Econometrica 75.1: 

259-276. 
 
Gaubert, Cecile (2018). “Firm sorting and agglomeration.” American Economic Review, 108(11), 3117-3153. 
 
Glaeser, Edward L. and David C. Mare. (2001). “Cities and skills” Journal of Labor Economics 19.2: 316-342. 
 
Greenstone, Michael, Richard Hornbeck, and Enrico Moretti (2010). “Identifying agglomeration spillovers: 

Evidence from winners and losers of large plant openings.” Journal of Political Economy 118.3: 536-598. 
 
Heim, Bradley T. (2007). “The incredible shrinking elasticities married female labor supply, 1978–

2002.” Journal of Human resources, 42(4), 881-918. 
 
Honoré, Bo. E. (1988). “Using Modes to Identify and Estimate Truncated Regression Models.” Working 

paper. 
 
Huang, M., Li, R., & Wang, S. (2013). “Nonparametric mixture of regression models.” Journal of the 

American Statistical Association, 108(503), 929-941. 
 
Jales, Hugo (2018). “Estimating the effects of the minimum wage in a developing country: A density 

discontinuity design approach.” Journal of Applied Econometrics, 33(1), 29-51. 
 
Jales, Hugo and Zhengfei Yu (2017). “Identification and estimation using a density discontinuity approach”, in 

Regression Discontinuity Designs: Theory and Applications (pp. 29-72). Emerald Publishing Limited. 
 
Kemp, Gordon C. J.M.C. Santos Silva (2012). “Regression towards the mode.” Journal of Econometrics, 

170(1), 92-101. 
 
Kleven, Henrik J. (2016). “Bunching.” Annual Review of Economics, 8, 435-464. 
 
Lee, Myoung-jae (1989). “Mode regression.” Journal of Econometrics 42.1-3: 337-349. 
 
Lee, Myoung-Jae (1993). “Quadratic mode regression.” Journal of Econometrics, 57(1-3), 1-19. 
 
Lopez, J. Humberto, and Luis Servén (2006). A Normal Relationship?: Poverty, Growth, and Inequality. Vol. 

3814. World Bank Publications. 



19 
 

 
Molloy, Raven, Christopher L. Smith, and Abigail Wozniak (2011). “Internal Migration in the United States,” 

Journal of Economic Perspectives, Vol 25(3), 173-196. 
 
Ruggles, Steve, Katie Genadek, Ronald Goeken, Josiah Grover, and Matthew Sobek. Integrated Public Use 

Microdata Series: Version 6.0 [dataset]. Minneapolis: University of Minnesota, 2015.  
 
Rosenthal, Stuart S and William C. Strange (2004). “Evidence on the Nature and Sources of Agglomeration 

Economies” in Henderson, J.V. and Thisse, J.-F. (Eds.), Handbook of Urban and Regional Economics, 
Volume 4, Amsterdam: Elsevier, 2129-2172. 

 
Rosenthal, Stuart S. and William C. Strange (2008). “The Attenuation of Human Capital Spillovers.” Journal 

of Urban Economics 64(2), 373-389. 
 
Rosenthal, Stuart S. and William C. Strange (2020). “How Close is Close? The Spatial Reach of 

Agglomeration Economies,” Journal of Economic Perspectives, Vol 34(3), 27-49. 
 
Saez, Emmanuel (2010). “Do taxpayers bunch at kink points?” American Economic Journal: Economic 

Policy, 2(3), 180-212. 
 
Sala-i-Martin, Xavier, and Maxim Pinkovsky (2009). “Parametric estimations of the world distribution of 

income.” NBER Working Paper number 15433. 
 
Yao, Weixin and Longhai Li (2014). “A new regression model: modal linear regression.” Scandinavian 

Journal of Statistics, 41(3), 656-67.



20 
 

Table 1: Individual and MSA Modal Wage Distributions Based on Unobserved Factorsa 

 
Panel A: Individual Married Female Wage 

 (1) (2) (3) (4) (5) (6) 
 5th quantile 25th quantile 50th quantile 75th quantile 95th quantile Observations 
College degree or more 16.65 26.94 34.93 44.92 71.28 155,456 
High school degree or less 10.81 16.02 20.41 25.88 39.09 153,015 
       

Panel B: Individual Male Wage 
 (1) (2) (3) (4) (5) (6) 
 5th quantile 25th quantile 50th quantile 75th quantile 95th quantile Observations 
College degree or more 18.48 33.08 44.59 60.12 123.60 388,091 
High school degree or less 12.60 20.21 26.55 34.37 52.83 396,955 
       

Panel C: MSA Modal Married Female Wage 
 (1) (2) (3) (4) (5) (6) 
 Min Max Median Mean Std. Dev. Observations 
College degree or more 22.92 41.82 30.49 31.05 3.30 216 
High school degree or less 13.53 24.77 17.61 18.08 2.17 216 
       

Panel D: MSA Modal Male Wage 
 (1) (2) (3) (4) (5) (6) 
 Min Max Median Mean Std. Dev. Observations 
College degree or more 27.44 52.12 37.96 37.65 3.80 263 
High school degree or less 18.04 33.20 22.73 23.23 2.94 263 
a Individual-level data are from the 2000 Census with samples restricted to non-Hispanic native-born white, full-time workers, age 25-54 who earn a wage equal to or 
above two-thirds of Federal minimum wage in 2000. Samples are further restricted to MSAs with at least 100,000 or more population in 2000 with at least 100 or more 
observations for the target group in the sample. Wage is in year-2022 (May) dollars and is calculated by dividing earned income by hours worked. Wage measures are 
exponentiated residuals from a log wage regression on fixed effects for industry, occupation, age, years of schooling (for high school or less) and marital status (for 
men) as described in the text. For each sample, raw log wage sample-specific means were added to the residuals. MSA modal wage is obtained from kernel density 
estimates using the Epanechnikov kernel with the Silverman rule of thumb bandwidth. 
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Table 2: Wage Regressions Based on Unobserved Factorsa 

 (1) (2) (3) (4) 

Panel A: Married women with college degree or more 
CDF of wage 

evaluated at the Mode 
Log(wage) at the 

MSA Mode 
Log(wage) at the 

MSA Mean 
Coefficient difference 

(3) - (2) 

Log population in MSA -0.0122 0.0343 0.0578 0.0235 

 (-3.80) (5.67) (10.93) (5.94) 

R-squared 0.042 0.113 0.348 0.103 

Observations 216 216 216 216 
     

Panel B: Married women with high school degree or less     

Log population in MSA -0.0006 0.0523 0.0526 0.0003 

 (-0.19) (8.16) (10.19) (0.08) 

R-squared 0.000 0.205 0.282 0.000 

Observations 216 216 216 216 

     

Panel C: Men with college degree or more     

Log population in MSA -0.0074 0.0365 0.0547 0.0182 

 (-2.93) (7.12) (12.04) (3.94) 

R-squared 0.028 0.142 0.365 0.050 

Observations 263 263 263 263 

     

Panel D: Men with high school degree or less     

Log population in MSA -0.0007 0.0394 0.0400 0.0006 

 (-0.28) (6.09) (7.94) (0.15) 

R-squared 0.000 0.109 0.180 0.024 

Observations 263 263 263 263 
a T-ratios based on robust standard errors in parentheses.  Individual-level data are from the 2000 Census with samples restricted to non-Hispanic native-born 
white, full-time workers, age 25-54 who earn a wage equal to or above two-thirds of Federal minimum wage in 2000. Samples are further restricted to MSAs 
with at least 100,000 or more population in 2000 with at least 100 or more observations for the target group in the sample. Wage is in year-2022 (May) dollars 
and is calculated by dividing earned income by hours worked. Wage measures are residuals from a log wage regression on fixed effects for industry, occupation, 
age, years of schooling (for high school or less) and marital status (for men) as described in the text. For each sample, raw log wage sample-specific means were 
added to the residuals. MSA modal wage is obtained from kernel density estimates using the Epanechnikov kernel with the Silverman rule of thumb bandwidth. 
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Figure 1:  Kernel Density Estimates of Wage Distributions Based on Unobserved Factors (Large and Small MSAs)a 

 

  

  
a Individual-level data are from the 2000 Census with samples restricted to non-Hispanic native-born white, full-time workers, age 25-54 who earn a wage 
equal to or above two-thirds of Federal minimum wage in 2000. Samples are further restricted to MSAs with at least 100,000 or more population in 2000 with 
at least 100 or more observations for the target group in the sample. Wage is in year-2022 (May) dollars and is calculated by dividing earned income by hours 
worked. Wage measures are exponentiated residuals from a log wage regression on fixed effects for industry, occupation, age, years of schooling (for high 
school or less) and marital status (for men) as described in the text. For each sample, raw log wage sample-specific means were added to the residuals. MSA 
modal wage is obtained from kernel density estimates using the Epanechnikov kernel with the Silverman rule of thumb bandwidth. Samples used to estimate 
kernel densities are restricted to observations for which adjusted wage level is no larger than $150/hour. 
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Online Appendix A: Modal Shift With a Generalized Error Distribution 

This appendix develops further properties of our model using the generalized error distribution (GED) 

to characterize the latent wage density. We make the following assumption: 

Assumption A1: f0(y) belongs to the family of symmetric, generalized error distributions (GED): 

 

𝑓 𝑦 𝑒   (A.1) 

 
where 𝜇 is the center of the distribution (equal to the mode, median and mean, and ym above). The 
scale parameter σ governs the degree of dispersion in the distribution, κ is a shape parameter that 
affects the degree to which the mode is sharply defined, with range from 0 to ∞, and 𝛤 denotes the 
gamma function. 
 

For this density function, κ = 1/2 corresponds to the normal distribution. For κ = 1, the resulting distribution is 

a double exponential or Laplace distribution which has a sharply defined mode, and for κ < 1/2 the distribution 

has a flatter mode than the normal. In the limit, as 𝜅 → 0, f0(y) converges to a uniform U(μ - σ, μ + σ) and at 

the other extreme, as 𝜅 → ∞ , f0(y) becomes degenerate with all mass concentrated at a single value for y. 

We consider two cases based on whether κ is strictly less than 1 or κ ≥ 1. For the former, elasticity 

conditions govern modal shift. However, when κ ≥ 1, the GED has a non-differentiable point at the mode and 

the mode is as least as sharply defined as for the Laplace. For this case, we show that the mode does not shift 

for any continuous and differentiable selection process like the one described in equation (2.4). 

The extent to which the mode shifts in response to selection is governed by four parameters: a and b 

from the selection process in expression (2.4) of the text, and σ and κ that govern the shape of the GED 

function in (A.1). Modal shift is formalized by Proposition A1.  

 
Proposition A1: Suppose that selection is as defined by (2.4) in the text and the latent wage density is 
as in assumption A1 with k < 1. If the selection function reaches an asymptote p at 𝑦  > 𝑦 ,  then: 
 
(i) Expressions (2.7) and (2.8) of the text are satisfied at a value for y that is the solution to: 

 

𝑦 𝑦 𝜎 𝜓 ,  (A.2a) 
 

where 𝜓 ,  = , . 
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(ii) The mode of the conditional density in city s, denoted by 𝑦 , , is the value of y that solves:  
 

𝑦 , 𝑚𝑖𝑛 𝑦  , 𝑦 𝜎 𝜓 ,  (A.2b) 

 
(iii) For normalized data with 𝜎 = 1, this simplifies to: 
 

𝑦 , 𝑚𝑖𝑛 𝑦  , 𝑦  𝜓 ,  (A.2c) 

 
Proof: Taking the derivative of fo in (A.1) with respect to the value for y, 

𝑓 ′ 𝑦  𝑓 𝑦   (A.3) 

 
Recall from (2.7) in the text that the mode of the conditional density function must satisfy 
 

 (A.4) 

Substituting (A.3) into (A.4), 

  (A.5) 

Rearranging (A.5), the change in the mode in response to selection, 𝑦 , 𝑦 , is the value of y that solves  

𝑦 , 𝑦 𝜎 𝜓 ,  . (A.6a) 

where 𝜓 ,  =  as in the text, or equivalently,  

𝑦 , 𝑦 𝜎 ,

,
 . (A.6b) 

since 𝜉 ,  y𝜓 , . 
 

If instead the GED shape parameter κ exceeds 1, the mode does not shift in response to selection. This 

condition and its proof are as follows.  

Proposition A2: For the GED defined in Assumption A1, if κ > 1 then the mode does not shift in response 
to a continuous, differentiable selection process, and the return to city size at the mode is unaffected by 
selection. 
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Proof: Suppose a GED distribution with κ > 1 and let 𝜇 denote the mode for the latent distribution. 

With κ > 1, the GED sharpens to a non-differentiable point at the mode with infinite slope for y close to 𝜇. Our 

goal is to show that the mode of the conditional density is 𝜇, recalling that 𝑓 𝑦 𝑓 𝑦 𝜋 𝑦 . 

Because the density is not differentiable at 𝜇, we cannot use first order conditions to locate the mode. 

Instead, note that density must decline upon moving away from the mode from above and below: 

lim
↓
𝑓 𝑦 0          (A.7) 

 
lim
↑
𝑓 𝑦 0          (A.8) 

 
Focus first on (A.7). Substituting for fs and applying the chain rule, (A.7) is equivalent to, 
 

lim
↓

lim
↓

         (A.9) 

 
Notice next that for 𝑦 𝜇, the derivative of the GED in expression (2.8) is given by, 
 

𝑓 𝑦 𝜎 𝑦 𝜇 𝑓 𝑦         (A.10) 
 
Substituting into (A.9) and rearranging yields, 
 

𝜎  lim
↓

𝑦 𝜇 ∞  .       (A.11) 

 
Notice that the righthand side of (A.11) goes to infinity at μ because for all k > 1, the limit term rises 

to ∞ as y approaches μ. The condition described by (A.11) is therefore satisfied for all selection functions with 

finite slope at the latent density mode μ. This confirms that the conditional density has a negative slope as one 

moves to the right of the latent density mode, μ. Consider also the inequality in (A.8). By definition, the slope 

of f0 is positive for y < μ and by assumption, 𝜋 𝑦  > 0 until the selection function reaches an asymptote p as 

in expression (2.4). These conditions ensure that the conditional density fs has positive slope left of μ. 

Together, these arguments confirm that (A.7) and (A.8) are both satisfied at μ and, for that reason, the mode 

does not shift in response to selection. 

Notice now that if 𝑦  is sufficiently large so that the elasticity condition determines the conditional 

mode, then the mode shifts to the right by an amount governed by 𝜎 𝜓 ,  , where 𝜎 and k determine the 
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degree to which the mode is sharply defined. If instead, selection is random, as with the case associated with 

Proposition 2, then 𝜓 ,  = 0 and (A.2c) confirms that the mode does not shift. Also, for 𝜓 , 0 and a given 

shape parameter k, as the scale parameter 𝜎 of the latent density increases, the distribution of y becomes more 

spread out and (A.2b) indicates that modal shift increases. 


